

Review of ORAUT-OTIB-0040, Revision 00 PC-1, "External Coworker Dosimetry Data for the Portsmouth Gaseous Diffusion Plant"

Ron Buchanan, PhD, CHP, SC&A, Inc. Advisory Board on Radiation and Worker Health, Subcommittee for Procedure Reviews

November 8, 2024

ORAUT-OTIB-0040 – Overview

- NIOSH issued OTIB-0040, rev. 00 PC-1, on November 7, 2006
- Provides information for assigning external dose to Portsmouth Gaseous Diffusion Plant (PGDP) workers who have no or limited monitoring data
- Based on site co-exposure (CE) dosimetry data
- November 16, 2023, the subcommittee tasked SC&A to review OTIB-0040, rev. 00 PC-1
- SC&A issued review of OTIB-0040 on May 29, 2024 (SC&A, 2024)

ORAUT-OTIB-0040 source of data

NIOSH obtained dosimetry data from:

- –Database "HR_prior_1993.mdb" for monitored PGDP workers
- -Table within database titled "Doseext_dat" containing external data through 1992

NIOSH's analysis of data

All data corresponded to individual badge readings:

– Deep dose (penetrating gamma radiation)

- Shallow dose (penetrating plus non-penetrating (NP) radiation)
- NIOSH analyzed individual badge results to develop CE dose data:
 - Prorated wear time
 - Included missed dose
 - Derived 50th and 95th percentile annual penetrating and shallow doses
 - Derived NP doses
 - -Adjusted penetrating dose for construction trade workers (CTWs)

NIOSH prorated wear time

- Prorated recorded annual doses by accounting for average fraction of a given year energy employees (EEs) worked at PGDP. Example:
 - If average time worked for 1965 was 11 months, the derived CE penetrating and shallow doses for 1965 were multiplied by 12/11 = 1.09
- CE doses would then represent a full year of monitored employment
- CE dose would be assigned based on a claimant's specific employment period

NIOSH included missed dose

- Missed dose calculated by multiplying number of null badge readings by dosimeter limit of detection (LOD) and summing results (table 6-1), and:
 - When annual doses were reported as zero Added one half of the appropriate maximum annual missed doses to the derived annual penetrating and shallow doses
 - If reported positive dose Maximum missed dose reduced by one badge exchange since it is not possible that all individual badge results were zero
- The above methods would likely change by using the current one person, one sample (OPOS) methodology

NIOSH derived 50th and 95th percentile CE doses

- Derived from adjusted recorded penetrating and shallow doses:
 - Data ranked into cumulative probability curves
 - -50th and 95th percentile doses extracted for each year

NIOSH derived NP dose

- Individual doses recorded in database as penetrating gamma and shallow doses
- NP dose derived by subtracting penetrating from shallow dose
- NP dose to be assigned as >15 kiloelectron volt (keV) electrons, with correction factors applied to account for clothing attenuation or other applicable considerations

NIOSH's recommendations for assigning CE doses

- ♦ 50th percentile:
 - Use for best estimate when exposed to intermittent low levels of external radiation
 - Should not be used for workers routinely exposed
- ♦ 95th percentile:
 - Use for routinely exposed workers (i.e., workers who were expected to have been monitored)
- External onsite ambient dose should be applied rather than CE dose for workers who were unlikely to have been exposed

Summary of NIOSH's penetrating and NP doses

 Table 8-2 of OTIB-0040 provides a summary of the 50th and 95th percentile annual penetrating and NP CE doses for 1954– 1992

NIOSH adjusted penetrating dose for construction trade workers

- Adjustment based on recommendation in ORAUT-OTIB-0052, rev. 00 (ORAUT, 2006b)
- Table 8-3 of OTIB-0040 lists 50th and 95th percentile annual CE penetrating dose for CTWs for 1954–1992

SC&A's review of original PGDP dosimetry data used in OTIB-0040

- Analyzed NIOSH's methods and calculations
- Found NIOSH correctly converted recorded dosimetry data to dose values in table 8-2
- Noted table 8-2 should be labeled as 8-1 (since it is the first table in section 8.0)

Validation of data used for CE dose development

NIOSH

- Compared a sampling of 10 claimants' dosimetry data from NIOSH DCAS Claims Tracking System to data used in the CE dose development for each of the 10 claimants CE
- Covered more than 130 workeryears of monitored employment at PGDP
- Comparison indicated excellent agreement (greater than 99 percent) between the two data sets

SC&A

- Reviewed NIOSH's data validation process and concurs that results indicate data used for CE dose development is valid
- CE data appear to meet criteria set forth in a later document, ORAUT-RPRT-0086, rev. 00 (ORAUT, 2017)

Evaluation of prorated wear time

NIOSH

 Outlines method for prorating recorded doses by accounting for the average fraction of a given year EEs worked at PGDP in section 7.0, item 1, page 8 of OTIB-0040

SC&A

 Concurs with NIOSH's method

Evaluation of adjustment for missed dose

NIOSH

- Outlines method for adjusting for missed dose in section 6.0 and section 7.0, item 2 of OTIB-0040
- Table 6-1 lists penetrating and NP maximum missed dose from 1954–present

SC&A

- Verified data used in table 6–1 is correct according to ORAUT-OTIB-0017, rev. 01 (ORAUT, 2005a) and ORAUT-TKBS-0015-6, rev. 00 (ORAUT, 2005b)
- No findings about NIOSH's adjustment for missed dose but did have one observation

Observation 1: Incorrect reference guidance

Table 6-1, footnote h:

– Should read "See ORAUT-OTIB-0017 (Attachment D) for an explanation." instead of "See ORAUT-OTIB-0017 (Attachment C) for an explanation."

Evaluation of derivation of 50th and 95th percentile annual penetrating and shallow doses

NIOSH

 Outlines method for deriving 50th and 95th percentile annual penetrating and shallow doses in section 7.0, item 3 of OTIB-0040

SC&A

 Reviewed and concurs with NIOSH's method

Evaluation of derivation of NP doses

NIOSH

 Outlines method for deriving NP annual doses in section 7.0, item 4 of OTIB-0040

SC&A

 Reviewed and concurs with NIOSH's method

Evaluation of NIOSH's recommendations of CE penetrating and NP doses

NIOSH

- Outlines recommendations for use of CE penetrating and NP doses in section 7.0, item 5 of OTIB-0040
- Recommended penetrating and NP CE doses are listed in table 8-2

SC&A

- Reviewed and concurs with NIOSH's method
- However, NIOSH did not provide a reference for a statement in OTIB-0040 concerning radiation effectiveness factors (observation 2)

Observation 2: Reference needed for radiation effectiveness factors

 SC&A requests NIOSH provide a reference concerning the statement at the bottom of page 8 of OTIB-0040:

...since the radiation effectiveness factors are the same for >15 keV electrons and >250 keV photons, and are **higher** for 30–250 keV photons. [Emphasis added.]

 Because OCAS-IG-001, rev. 3 (NIOSH, 2007, p. 58) indicates skin dose conversion factor for 30–250 keV photons is not always greater than for >250 keV for all exposure geometries

Evaluation of adjusting penetrating dose for CTWs

NIOSH

- Outlines method for deriving CE penetrating dose for CTWs in section 8.0 of OTIB-0040
- Recommended penetrating CE doses for CTWs are listed in table 8-3

SC&A

- Reviewed and concurs with NIOSH's method
- Verified table 8-3 dose values are correct
- Noted table 8-3 should be labeled 8-2 since it is the second table in section 8.0

NIOSH's recommendations for assigning neutron dose

- No neutron dosimetry results recorded in PGDP EE files
- Potential for neutron exposure at PGDP in certain areas and facilities
- Recommends ORAUT-TKBS-0015-6 (ORAUT, 2005b) be used for neutron dose assignment when appropriate

SC&A's review of neutron dose

- Reviewed and concurs with NIOSH's evaluation
- ◆ ORAUT-TKBS-0015-6 (ORAUT, 2005b) recommends:
 - Neutron-to-photon ratio of 0.2 be applied to photon dose to assign neutron dose for years prior to 1997, if appropriate
- ORAUT-RPRT-0060, rev. 00 (ORAUT, 2019):
 - Provides additional and updated information for PGDP neutron doses
 - Recommends methods to assign neutron dose for PGDP claimants

Evaluation of when to assign ambient dose

NIOSH

 Recommends ambient external dose not be assigned when CE dose is assigned

SC&A

Concurs with NIOSH's recommendation

SC&A's evaluation of CE penetrating and NP dose values in table 8-2

- Concurs with method NIOSH used
- Performed calculations and reviewed data
- No issues with recommended penetrating and NP CE dose values in table 8-2 of OTIB-0040

SC&A's evaluation of CTW CE dose values in table 8-3

- Concurs with method NIOSH used
- Performed calculations and reviewed data
- No issues with recommended penetrating CTW CE dose values in table 8-3 of OTIB-0040

Conclusions

SC&A reviewed:

- The original recorded PGDP dosimetry data
- -NIOSH's use of original recorded PGDP dosimetry data
- NIOSH's analysis of data and recommendations
- Data in tables 8-2 and 8-3 of OTIB-0040
- SC&A identified no findings but did have two observations:
 - Observation 1: Incorrect reference guidance in table 6-1 footnote
 - Observation 2: Reference needed for radiation effectiveness factors

References 1

National Institute for Occupational Safety and Health. (2007). *External dose reconstruction implementation guideline* (OCAS-IG-001, rev. 3). https://www.cdc.gov/niosh/ocas/pdfs/dr/oc-ig-001-r3.pdf

Oak Ridge Associated Universities Team. (2005a). *Interpretation of dosimetry data for assignment of shallow dose* (ORAUT-OTIB-0017, rev. 01). <u>https://www.cdc.gov/niosh/ocas/pdfs/tibs/or-t17-r1.pdf</u>

Oak Ridge Associated Universities Team. (2005b). *Technical basis document for Portsmouth Gaseous Diffusion Plant – Occupational external dose* (ORAUT-TKBS-0015-6, rev. 00). https://www.cdc.gov/niosh/ocas/pdfs/arch/portsm6.pdf

Oak Ridge Associated Universities Team. (2006a). *External coworker dosimetry data for the Portsmouth Gaseous Diffusion Plant* (ORAUT-OTIB-0040, rev. 00 PC-1). <u>https://www.cdc.gov/niosh/ocas/pdfs/tibs/or-t40-r0-p1.pdf</u>

References 2

Oak Ridge Associated Universities Team. (2006b). *Parameters to consider when processing claims for construction trade workers* (ORAUT-OTIB-0052, rev. 00).

Oak Ridge Associated Universities Team. (2017). *Internal dosimetry coworker data completeness test* (ORAUT-RPRT-0086, rev. 00).

https://www.cdc.gov/niosh/ocas/pdfs/orau/oraurpts/or-rprt-86-r0-508.pdf

Oak Ridge Associated Universities Team. (2019). *Neutron dose from highly enriched uranium* (ORAUT-RPRT-0060, rev. 00).

https://www.cdc.gov/niosh/ocas/pdfs/orau/oraurpts/or-rprt-60-r0-508.pdf

SC&A, Inc. (2024). A review of ORAUT-OTIB-0040 for external coworker dosimetry data for the Portsmouth Gaseous Diffusion Plant (SCA-TR-2024-PR040, rev. 0). https://www.cdc.gov/niosh/ocas/pdfs/abrwh/scarpts/sca-tib40-r0-508.pdf