COVID-19 Vaccination DAVID J. SENCER CDC MUSEUM PUBLIC HEALTH ACADEMY

Word Bank coronavirus

mRNA

population immunity

reproduction number (R_o)

effective reproduction number (R_T)

vaccine confidence

white cells

molecule that is the blueprint for making proteins
the average number of people that one person with a virus is likely to infect
the trust that patients, their families, and providers have in recommended vaccines
a family of viruses characterized by a crown of spikes on the outside
when an entire population is resistant to a disease
the average number of people that one person with a virus SARS-CoV-2 is likely to with mitigation measures in place
cells that fight infection

Understanding COVID-19

- Coronaviruses are a type of virus with a crown of spike proteins sticking out
 - There are many types, including SARS, MERS, and viruses that cause colds
 - SARS-CoV-2 is the specific coronavirus that causes COVID-19

- COVID-19 causes respiratory symptoms but can also harm other parts of the body
- More than 4.5 million people have died from COVID-19 worldwide

- 1. How do you think vaccines prevent illness?
- 2. What are some reasons that a person might get a COVID-19 vaccine?
- 3. How safe and effective are vaccines against COVID-19?

COVID-19 Vaccination and CDC

- COVID-19 vaccines help the body develop immunity to the SARS-CoV-2 virus
- Vaccines are safe and effective
- Side effects are generally mild
- No vaccine is 100% effective
- Provide strong protection against serious illness, hospitalization, and death

COVID-19 Vaccination and CDC

- Vaccines from Pfizer-BioNTech and Moderna are both mRNA vaccines
- Vaccine includes mRNA sequence from virus's spike proteins
- Cells produce the spike protein using the instructions from mRNA
- Immune system builds antibodies to fight against the spike protein
- If person is exposed to SARS-CoV-2 later, the immune system remembers the spike protein and can quickly build antibodies against it

- How is CDC supporting the efforts to vaccinate all Americans against COVID-19?
- 2. Why is getting a COVID-19 vaccine important?
- 3. How are **mRNA** vaccines different from most other vaccines?

From the Expert

https://youtu.be/EH_qjp5u030

- 1. Why is it important to identify vulnerable populations when administering vaccines?
- 2. Who are trusted community members who help people make vaccine decisions?
- 3. Why are vaccines our best defense against coronavirus?

Call to Action!

- 1. Build a model for population immunity.
- 2. Publish your vaccine story.
- 3. Share your findings.

Why do you think participation is important?

Give it a Try

Use the Engineering Design Process

Oefine	Define the problem
Research	Do background research
Requirements	Specify requirements
Brainstorm	Develop solutions
× Build	Build a prototype
Test	Test and redesign
Share	Communicate results

1. Build a Model for Population Immunity

- Cut out the 64 vaccine tiles
- See how vaccination affects the way a disease moves through a population
 - Round 1: 50% vaccinated
 - Round 2: 75% vaccinated

Give it a Try

2. Publish your Vaccine Story

- Tell your vaccine story
- Describe how the vaccine has impacted you
- Convince others to get vaccinated
- Share your story with others

Give it a Try

3. Share Your Findings

- Instagram @CDCmuseum

Give it a Try

Questions?

