Epi Info™ 7 User Guide — Chapter 3 — Check Code

3. Check Code: Customizing the Data
Entry Process

Introduction

The Check Code tool allows users to customize the data entry process. It is useful to check
for errors during the data entry process, to do automatic calculations in fields, and to skip
over parts of the questionnaire if certain conditions are met. Check Code makes it possible
to instruct the Enter tool to perform such operations automatically. By using Check Code,
you can protect data against many common types of errors by setting rules for data entry.
Check Code is created using the Check Code Editor.

Examples of operations that can be performed in Check Code include:

¢ Displaying messages that appear to be part of the questionnaire

e C(Calculating fields from mathematical operations

e Checking one or more fields for relationships (e.g., making sure birth date is earlier
than current date)

e Checking fields for inconsistencies (e.g., male pregnancies)

¢ Displaying error messages due to improper entries in a field

e Complex statistics or other operations that are written in other languages

e Automatic indexing of fields for faster searching

o Automatic searches during data entry

An operation can be performed automatically each time data is entered in a field or
conditionally when a certain value is entered. Check code is optional and is designed to
allow the user to provide customized data entry processes.

Accessing Check Code Program Editor

To navigate to the Check Code Program Editor, click the Check Code button in the
Form Designer tool bar after opening your Epi Info 7 project.

' Form Designer - [c\users\sshmed\Epi Info 7\Projects\ECoINEColi.pri\FoodHistory\Page 1] o e =)

File Edit View Inset Format Tools Help
|] New Project 5 Open Project 3 Close Project Unde Redof [E] Check Code Ji7] Enter Data
Project Explorer 2

FeodHistory\Page 1
=& ECok ‘

E. Coli 0157:H7 Food History Questionnaire “omwsses - o

Ceners for Disease Coorenl

a0 Preversion

=7 FoodHistory
B Page 1]
) Fagez
+ (] FoodHistory_NoCheckCode
| Felds

Date of Interview

Figure 3.1: Check Code button

3-1

Alternatively, select Tools > Check Code Editor from the Form Designer navigation
menu.

File Edd Veew lnged Foemat | Took | Help
{1 New Project 71 Open Project 70 Data Orctronary
Project Explorer SR L] Check Code Ednor

) [
=] Foot Make Form frcm Data Teble . : - Z U5, DEPAATMENT OF MEALTH
8] 1| Upgrade Project E. Coli 0157:H7 Food History Questionnaire "M =ma=
-]) it "EMMINDIIHI-F!‘
T FosdHatoey_NelheckCode T
@ Create Data Table i
Al Delete Dats Table Case Dmo{i'mmew_
el . . 1
- ::n i |03 Enter Data l | A2 data coniained beren are fitorsl
: i Uptiorr Demagraphic Intormation

First Name Sex

A-Ambiguous

Last Hame

Figure 3.2: Form Designer Menu

Navigate the Check Code Program Editor

The Check Code Editor window contains four sections:

1. Choose Field Block for Action
2. Add Command to Field Block
3. Program Editor
4.

Messages
e o= |[-d
File Edit Fonts
+ Validate Check Code) Close [Save & Print
Field CaseID - 1.Choose Field Block for Actien 1
Before 3 DefineVanables
//add code here - Form : FoodHistory
CALL IllnessCheck @ Record
End-Before = [Subroutine{s)
End-Field (#)- [Page 1) : Page
& [Page 2] : Page
Field DOB
After
// Assigns the difference in years between the value entered intoc DOB and the value
// entered into DateOfInterview to the AGE field. This acts as an automatic age
// calculator during data entry.
ASSIGN AGE = YEARS(DOB, Dateoflnterview)
End-After
End-Field
Field GetCoordinates
Click
GECCODE Patienchddress, Latitude, Longivude Add Block To Editor
End-Click
End-Field 2. Add Command To Field Block 2
Field OnsecDate At
Afrer Cal
ASSIGN OnsetWeek = EPIWEEK (OnsetDate) Clear
End-After m
End-Field
Enable
Field Asian Eeecute
Click i Geocode
AEETON Blase — ¢ o GoTe
< 4 m » Help
Messages & tide
Unhide
Highlight
¥
MNewRecord
Qut

Line: 1 Column: 13 Position: 12

Figure 3.3: Check Code Program Editor

3-2

1. The Choose Field Block for Action tree allows you to select fields and sets when
the actions designated by the Check Commands occur during data entry.

2. The Add Command to Field Block window displays all the available check
commands used in the Form Designer program.

3. The Program Editor window displays the code generated by the commands created
from the Choose Field Block for Action or Add Command to Field Block
window. Code can also be typed and saved directly into the Program Editor.

4. The Message window alerts you of any check command problems

There are several options on the toolbar at the top left that allow you to save, edit, validate
and change the font of your program editor. You can close the Check Code Editor and
return to your form by clicking on the red X button at the top right of your screen, clicking
on the Close button, or by pressing the F10 key.

Check Code Commands

Check commands are structured in blocks. Each block begins with a field, page or form
name and ends with the word END. All commands must be within a field-name block.
Commands in a block are usually activated either before or after an entry is made in the
field. For some field types, blocks can also be activated when clicking on the control (i.e.
checkboxes and command buttons). The usual case is that the commands are performed
after an entry has been made and the user has pressed the <ENTER> key or when the
cursor has left the field automatically. This behavior can be altered by placing commands in
blocks called BEFORE. The format of check code blocks is usually structured as follows:

Field VARIABLENAME

After

Check Code syntax inserted here
End-After

End-Field

e The FIELD parameter establishes to which field name the check code block
corresponds.

e The AFTER parameter specifies when the action will occur. The AFTER event is
executed as soon as the cursor leaves that field.

e The END-AFTER parameter specifies the closing of the commands to be executed,
in this example, for the AFTER event. In other words, any check code inserted
between the AFTER and END-AFTER section will be executed for that field after
the cursor leaves the field.

3-3

The END-FIELD parameter simply closes the block of commands incorporated for
the corresponding field.

In the example below, we have incorporated an AFTER event for a field called DOB.
The block of check code will execute the assignment of a value to the field AGE

using the YEARS function. The YEARS function will calculate the difference
between two date fields and provide the result in Years.

Field DOB

After

ASSIGN AGE=YEARS(DOB,SYSTEMDATE)
End-After
End-Field

Basic Check Code Command Rules

1.

Check Commands must be placed in a block of commands corresponding to a
variable/field in the database. Special sections are provided to execute commands
before or after you display a form, page, or record.

Comments preceded by two forward slashes ("//") may be placed within blocks of
commands and will be ignored during execution of check code.

Commands in a block are activated before or after you make an entry in the field. By
default, commands are performed after an entry has been completed with <Enter>,
<PgUp>, <PgDn>, or <Tab>, or another command causes the cursor to leave the
field (e.g., GOTO). Commands can also be activated when clicking on a field or
when selecting a value from a drop down list (versions 7.1.4 or higher only).

Check commands for each field are stored in the form in a record associated with a
particular field.

Commands are inserted automatically through interaction with the dialog boxes.
The syntax generated by the dialogs is then displayed in the Check Code Editor.
Text can also be edited and saved in the Program Editor.

BEFORE and AFTER commands can be inserted into fields but also into a form,
page or a record.

Creating a Check Code Block

1.

From Choose Field Block for Action, select and expand the form, page, record, or
field that will receive the commands. Expand by clicking the + sign.

3-4

1. Choose Field Block for Action
i Died : YesNo -
DOB : Date
DoctorVisit : YesNo
DoctorVisitDate : Date
Email Address : Text
EthnicityGroup : LegalValues
Fever : Checkbax
FeverTemp : Number
FirstName : Text
GetCoordinates : CommandButton
Headache : Checkbox
HomePhone : PhoneMNumber
Hospital AdmissionDate : Date
; before
after
Hospitalized : YesMNo

N1 - Wenhla

Figure 3.4: Choose Field Block for Action

2. Select whether the command will be executed before or after data entry into the
form, page, record, or field by clicking in the corresponding option (in this example
AFTER).

1. Choose Field Block for Action
i DoctorVistDate : Date -
EmailAddress : Text
EthnicityGroup : Legal\alues
Fever : Checkbox
FeverTemp : Number
FirstMName : Text
GetCoordinates - CommandButton
Headache : Checkbaox
HomePhaone : PhoneMumber
Hospital AdmissionDate : Date
before
Hospitalized : YesMo
ILL : YesMo
Initable : Checkbox
LastMame : Text

L=t - hlembe

Add Block: Hespital 4ddmissionDate after

Figure 3.5: Add Block

3-5

3.

You can either double click on the AFTER event or click the Add Block button in
order to insert the block. The Check Code Block appears in the Check Code
Editor.

Field HospitalBdmissionDate
Lfter
//fadd code here

End-4fter
End-Field

Figure 3.6: Code Block Added to Editor

After a Check Code Block has been created for a form, page, record, or field, you can insert
commands within the block using the Add Command to field Block section.

Create a Skip Pattern with GOTO

You can create skip patterns by changing the tab order and setting a new cursor sequence
in a form, or by creating Check Code using the GOTO command. Skip patterns can also be

created based on the answers to questions using an IF/THEN statement. In the following

example, we will add check code to move the cursor to the Ethnicity field after data is
entered into the DOB field.

1.
2.
3.

From Form Designer, Open the Ecoli.prj project.
Double click on the FoodHistory_NoCheckCode form.
Click Check Code or select Tools > Check Code Editor. The Check Code Editor

opens.
From the Choose Field Block for Action section, expand the node for Page 1 to
see the various fields on the first page.

Expand the node for the field DOB.

Died : YesMo
DB : Date

é“ before
DoctorVist : YesMao
DoctorVisit Date : Date
Email Address : Text

Tl o 1 1501

Figure 3.7: Dialog Block for Action after DOB

3-6

6. Double click on the after event.
7. A block of code for the DOB field will display in the Check Code Editor.

"Check Code Editor - [FoodHistory NoCheckCode]

File Edit Fonts
' Validate Check Code ¥) Close | Save = Print

f*
1. Choose a block from the upper right list to cre
2. Belect a command to add to the block from the 1
B1]1 Check Code command=s must be within a block.
= f
Field DOB
After
ffadd code here
End-After
End-Field

Figure 3.8: Check Code Block for Action After DOB

8. Click GoTo from the Add Command to Field Block list box. The GOTO dialog
box opens.

9. Select the EthnicityGroup field for the cursor to jump into after data has been
entered in the DOB field. The code will run after the cursor leaves the field.

ﬁ 5 B e T Ek] F s
Assign
Cookedbacon - MutoSearch
DateCfDeath call
Dateof Interview Clear
Demographicinformation Diefine
Died EI Dialog
DOB Disable
Doctorisit Enable
DoctorVisitDate Exzcute
Email Address Geocode
Fever Help
FeverTemp Hide
FirstName 52 Unhide
Highlight
[ok || Cancel |[Hep | Unhighlht
NewRecord
Quit

Figure 3.9: Skip Pattern Go To dialog box

3-7

10. Click OK. The code appears in the Check Code Editor.

Field DOBE
Lfter
ffadd code here
GOTO EthnicityvGroup
End-After
End-Field

Figure 3.10: Skip Pattern Check Code Command

11. Click the Verify Check Code button from the Check Code Editor.
12. Click the Save button from the Check Code Editor.
13. Click Close to return to the form.

To test the skip pattern, open the form in the Enter Data tool. Use the tab key to ensure
that upon leaving the field with the GOTO command, the cursor goes to the specified field.

Create a Skip Pattern Using IF/THEN and GOTO

Use IF/THEN statements to create skip patterns based on the answers to questions in the
form. This example creates code, which states that if the person answered No (-) for the
Hospitalized field, then the cursor subsequently jumps to the field Was the patient
treated with antibiotics? and skips the Hospital Admission date field.

1. From Form Designer, Open the Ecoli.prj project.

2. Double click on the FoodHistory_NoCheckCode form.

3. Click Check Code or select Tools > Check Code Editor. The Check Code Editor
opens.

4. From the Choose Field Block for Action section, expand the node for Page 1 to

see the various fields on the first page.

Expand the node for the Hospitalized field.

The action needs to occur after data are entered into the Hospitalized field.

Double click on the after event.

A block of code for the Hospitalized field is created and displayed in the Check

Code Editor.

® oo

3-8

LI e T e T T

HospitalAdmissionDate : Date
Hospitalized : YesMo

Ew before
ILL : YesMo
Imtable : Checkbox
| astMame - Text

Add Block: Hospitalized after

Figure 3.11: Dialog Block for Action after Hospitalized

9. The code appears in the Check Code Editor.

Field Hospitalized
Lfter
//add code here

End-After
End-Field

Figure 3.12: If/Then Block Code After Hospitalized

10. Click If from the Add Command to Field Block list box. The IF dialog box opens.

11. From the Available Variables drop-down list, select the field to contain the action.
For this example, select Hospitalized. The selected variable appears in the If
Condition field.

12. From the Operators, click =.

13. From the Operators, click No. The If Condition field will read Hospitalized=(-).

14. Click the Code Snippet button in the Then section. A list of available commands
appears.

15. From the command list, select GoTo. The GOTO dialog box opens.

16. Select the field for the cursor to jump to based on a No answer from the list of
variables. For this example, select Antibiotics.

17. In the GOTO dialog box, click OK to return to the IF dialog box.

3-9

I - HospitalAdmissionDate : Date
E i E- Hospitalized : YesNo
Available Variables: befors
Hosptalec el i ffaliafeialie el | | & wvee
[aw |[or |[veer || No' | "Misng” | ! Imitable : Checkbex
If Condition: | asthame - Tet
Hospitalized = (-} Add Block:
Then: 2. Add Command To Field Block
GOTO Antibictics NNeE] e
Call
Clear
Define
Dialog
Disable
Enable
- Execute
Geocode
Else: GoTo
Help
e Hide
Unhide
Highlight

Figure 3.13: If/Then dialog box

18. Click OK. The code appears in the Check Code Editor. The example code appears as:

Field Hospitalized
Afcer
//add code here
IF Hospitalized = (-) THEN
GCTC Antibiotics
END-IF

End-After
End-Field

Figure 3.14: If/Then Check Code Command

19. Click the Verify Check Code button from the Check Code Editor.
20. Click the Save button from the Check Code Editor.

Using Functions with a Date field

To program a mathematical function, use the Program Editor and the ASSIGN command.
For example, Check Code can be created to automatically calculate the age of a respondent
based on the date of birth and the date the form was completed, or the system date of the
computer when data were entered.

3-10

This example uses a field called DateOfBirth and a field called Age from the
FoodHistory_NoCheckCode form in the Ecoli project to demonstrate the use of the
ASSIGN command and the function YEARS.

1.

10.
11.

12.
13.

14.
15.
16.

Click Check Code or select Tools > Check Code Editor. The Check Code Editor
opens.

From the Choose Field Block for Action section, expand the node for the page
where the DateofBirth field is located.

Expand the node for the DateofBirth field.

Double click on the after event.

A block of code for the DateofBirth field is created and displayed in the Check Code
Editor.

Click Assign from the Add Command to Field Block list box. The Assign dialog
box opens.

From the Assign Variable drop-down list, select the field where the calculated
value should appear. For this example, select the Age field.

Click on the functions button .

Select the Date Functions option.

Click on the YEARS function.

Double click on the <start_date> parameter. This will highlight that section of the
command.

= Expression
YEARS(FEEIE Crlkend _date)

Figure 3.15: Start Date Parameter

Select DateOfBirth from the list of Available Variables
Double click on the <end_date> parameter. This will highlight that section of the
command.

= Expression
YEARS(DateofBirth,

Figure 3.16: End Date Parameter

Click on the functions button .

Select the System Functions option.

Click the SYSTEMDATE function. Once completed, the syntax will be inserted on
the dialog window.

3-11

=] UateotBirth . Uate lime
Lot before

after
Pregnant : Option

2 Add Command To Field Block

Assign

Assign
Posion Varcble
e Ay I S (720 [T
[ao [orR | Ye [Mo][tesng |
| = Bwpression
.) rl Numeric and Comparison Operators
Avsilable Varizbles Logical Operators
1 Numeric Functions
0k | [Cancel | [Functions | [Gear][[

YEARS

System Functions
Time Functions

Text Functions

3
3
3
3
3
3
3

Figure 3.17: Assign Date Function options

MONTHS
YEAR
MONTH L
DAY

DateofBirth R

rAssign M
Assign Variable
T e
AND OR Yes No Missing
= Expression
= YEARS(Dateof Bith, SYSTEMDATE)

Figure 3.18: Assign dialog box

17. Click OK. Check Code will appear in the Check Code Editor.

18. Click the Verify Check Code button in the Check Code Editor.

19. Click the Save button in the Check Code Editor.

Fheck Code Editor - [Persona
File Edit
,/ Validate Check Code ¥) Close H Save % Print

Fants

Field DateofEBirth
After
//add code here
AS5IGH Age = YEARS(DateofBirth,

End-After

End-Field
|

Figure 3.19: Assign Check Code Command

3-12

SYSTEMDATE)

When Date of Birth is entered into the form, the Age field will automatically populate.

Date of Birth Age
1/1/1995 12:00:00 AM 18

Figure 3.20: Assignment of Age in Enter Data

Interact with Users with the DIALOG command

The DIALOG command provides interaction with data entry personnel from within the
program. Dialogs can display information, ask for and receive input, and offer lists to make
choices. In the following example, the DIALOG command creates a reminder that all fields
on page two of the survey must be completed.

1. From Form Designer, Open the FoodHistory_NoCheckCode form in the
EColi.prj.

2. Click Check Code or select Tools > Check Code Editor. The Check Code Editor
opens.

3. From the Choose Field Block for Action list box, select Page 2. The action
should occur before the page is loaded.

4. Select Before from the Before or After Section.

5. Click the Add Block button.

1. Choose Field Block for Action
- [Page 2] : Page

i before

e ghter
Amercancheese ; Checkbox
Applejuice : Checkbox
Beansprouts : Checkbox
Beefjertey : Checkbox
Bluebemies : Checkbox
Breastmilk : Checkbox
Butter : Checkbox
Buylast TenDays . Muttiline
Cheddarcheese : Checkbox
Cooleedbacon : Checkbox
Freshoelene - Checkhox

Figure 3.21: Dialog Block for Action

3-13

6. The code appears in the Check Code Editor.

Check Code Editor - [FoodHistory]

Edit Fonts
" Validate Check Code) Close [l Save S Print
Fage [Page 2]

Lfter
Jfadd code here

End-&fter
End-Page

Figure 3.22: Dialog Block Code

7. From the Add Command to Field Block list box, select Dialog. The DIALOG box
opens.

8. Select Simple from the Dialog Type radio button options.
9. In the Title field, type Alert.

10. In the Prompt field, type All fields on page two must be completed.

Dialog
Dialog Type
@ Simple (") Get Variable (7) List of Values
Title
Alert

Prompt
All fields on page two must be completed. -

Figure 3.23: Dialog command box

11. Click OK. The code appears in the Check Code Editor.

3-14

Check Code Editor - [FoodHistory_NoCheckCode |
File Edit Fonts
" Validate Check Code ¥) Close [d] Save & Print

IPage [Page 2]
Before
//add code here
DIALOG "All fields on page two must be completed."™ TITLETEXT="Alert™

End-Before
End-Page

Figure 3.24: Dialog Check Code Command

12. Click the Verify Check Code button from the Check Code Editor.
13. Click the Save button in the Check Code Editor.

Searching for Records — Using the AUTOSEARCH command

The Autosearch command automatically searches for an existing record that matches the
entered values and notifies the user. A choice is then offered between editing the matching

record or continuing with data entry in the new record. Duplicate records are detected and

may be prevented with the AutoSearch command. For this example, we will incorporate

the Autosearch command on the CaselD field.

1.

o

From Form Designer, Open the FoodHistory_NoCheckCode form in the
EColi.prj.

Click Check Code or select Tools > Check Code Editor. The Check Code Editor
opens.

From the Choose Field Block for Action section, expand the node for the page
where the CaselD field is located, which in this example is Page 1.

Expand the node for the field CaselD.

Double click on the after event.

A block of code for the CaselD field is created and displayed in the Check Code
Editor.

3-15

1. Choose Field Block for Action

g after -
- Abdominalcramps : Checkbox
[Age: Number
[+ AmericanindianAlaskanMative : Checkbox
- Antibictics : YesNo
- Asian - Checkbox
(- Black : Checkbox
#- BloodyDiamhea : Checkbox
=2 CaselD : Number

b after

- Chills : Chechkbox
[+ DatelfDeath : Date
- Datecfinterview : Date
- Died : YesNo
- DOB : Date i
i Mimmd el fimik o Womm hlm

Add Block: CaszelD after

Figure 3.25: AutoSearch Block for Action

7. The code appears in the Check Code Editor.

W
Edit Fonts

" Validate Check Code ¥} Close |gf Save S Print

Field CaselD
Lfter
S /fadd code here

End-after
End-Field

Figure 3.26: AutoSearch Block Code

8. From the Add Command to Field Block list box, click Autosearch. The
Autosearch window opens.

9. Select the variable(s) to be searched during data entry. In this example, select
CaselD.

3-16

Auto Search

Black -
BloodyDiamhea

Bluebemies

Breastmillc |
Butter

E!%LastTen Dﬁ

Cheddarcheese

Chills

Cookedbacon

Datelf Death
DateofInterview
Demographicirformation

m |

Only display selected fields

[] Run on new and existing records (always)

| ok || Cancel || Hep |

e ———— = ————————

Figure 3.27: Auto Search dialog box

10. Click OK. The code appears in the Check Code Editor window.

Check Code Editor - [FoodHistory |

Edit Fonts

+ Validate Check Code ¥} Close [Save S Print

Field CaseID
After
//add code here
AUTOSEARCH CaseIDl DISPLAYLIST CaseID

End-After
End-Field

Figure 3.28: AutoSearch Check Code Command

11. Click the Verify Check Code button from the Check Code Editor.
12. Click the Save button from the Check Code Editor.
13. .Click Close to return to the form.

When a duplicate record is entered in the Enter Data tool, the Autosearch dialog box
opens with all the matching records listed. To view the potential duplicate record, double-
click the arrow that appears next to the record. The field where the potential duplicate was
entered is cleared. Alternatively, click Cancel to remain on the current record and accept
the duplicate value. To display other variables when a matching record is found, add the

3-17

variable names after the DISPLAYLIST parameter (i.e. Last Name, First Name and Date
of Birth as shown below).

Field CaselD
After
//add code here
AUTOSEARCH Caseld DISPLAYLIST CaselD LastName FirstName DOB
End-After
End-Field

In the check code above, the autosearch will be done on the field CaselID and if any
matching records are detected, the fields CaselD, LastName, FirstName and DOB will
be displayed on the grid.

CaselD LastName FirstName: DOB

|C - Moore 1/12/1982

Mutosearch found matching records.
Double-click a row or click OK to navigate to the selected matching record.
Click Cancel to continue entering the current record.

oK || Cancsl

Figure 3.29: Autosearch Results

Note: For more information on using Autosearch, please see the Autosearch topic
in the Command Reference.

Copy the Value of a Field from a Main Form to a Related Form

When users have developed a relational database setup using Epi Info™ 7, it might be
appropriate to transfer values entered in the parent form (i.e. core demographics) into the
child form (i.e. Visits information). In order to accomplish this process, Check Code must be
created for a value from a field in the main form to appear in a related form (i.e., there may
be a Case ID Number or Patient’s Name that needs to be visible in the parent and child
forms).

3-18

The following instructions assume the parent and child forms already exist. Let’s assume
that the Parent form is called Surveillance while the Child form is called Hepatitis. The
field to be copied needs to exist in the parent form or be created in the parent form prior to
the incorporation of the check code in the child form (i.e. Last Name in parent form will be
passed to Last Name in child form). Let’s make the assumption that the name of the field
on the Parent form whose value will be copied to the Child form is called PatientId.

1. From Form Designer, open your project and click on the child form name from the
Project Explorer tree.

2. Create a new field. The new field must be the same field type as the field being
copied from the parent form. For this example, use PatientId.

3. Select the Read Only option.

4. Click OK. The new field appears in the form. This is where the value from the
parent form will be assigned and displayed during data entry on the child form.

5. Click Check Code or select Tools > Check Code Editor. The Check Code Editor
opens.

6. From the Choose Field Block for Action list box, select the page corresponding to
where the Patientld field was placed. Let’s make the assumption that this field was
created on Page 1. For the Page, select the before from the Before or After Section.

7. Click the Add Block button.

1. Choose Field Block for Action
+ Subroutine(s) ~
= [Page 1] : Page
o after
Cancer : YesNo
Chronlung : Yesho
ChronMetabolic : YesMNa
Cognitive Dysfunction : YesNo
CVD : YesNo
GuillzinBameSyn : YesMNo
Hemoglobinopathy : YesNo
Immunosuppresive : YesNo
Neuromusc : YesNo
Other? : Text
Other? : Text
Otherd : Text
Patientld : Text
Pregnant : YesMao
Renal : Yesho
Seizure : YesNo

m

5] [e[[[[o e[[[o [o [o] [e [e

Add Block: [Page 1] before

Figure 3.30: Choose Field Block for Action

8. From the Add Command to Field Block list box, click Assign. The ASSIGN
dialog box appears.
9. From the Assign Variable drop-down list, select the new variable, Patientld.

3-19

10. In the = Expression area, type the field name from the parent form, in this case
PatientId. This field name must be prefixed by the parent form’s name followed by
a period in the Assign expression. We will need to make that modification once the
command is written into the Program Editor.:

Ll

e = 2. Add Command To Field Block
Assign Variable P
oSearc!
P o A
Cao Jon Jlve JL no J wea] P[5
_ ; Dialog
=Erem Disable
Patient|d|
- =
Available Variables Geocode
Patiertld - ﬁ;?
Hide
oK] [Cancel] [Functions] [Clear] [Help] Unhide
Highlight
Unhighlight
o f
NewRecord
Guit
Figure 3.31: Copy Value- Assign dialog box
11. Click OK.

12. The code appears in the Check Code Editor. If the child form already has a field with
the same name as the one being copied from the parent form, it is important to
distinguish the parent’s field name. This field name must be prefixed by the parent
form’s name followed by a period in the Assign expression. In this example,
Hepatitis is the name of the child form while Surveillance is the name of the parent
form. If the child form does not have a field with the same name as the one being
copied from the parent form, it is sufficient to indicate just the field name.

Therefore, for this example, this modification will be required to the syntax since the
field is called the same on both forms. Once completed, your syntax should look like
the one on Figure 3.32.

Check Code Editer - [Hepatitis]
File Edit
+ Validate Check Code ¥) Close [gf Save 5 Print

Fonts

Page [Page 1]
Before
//add code here
AS5IGHN Hepatitis.PatientId = Surwveillance.PatientId

End-Before
End-Page

Figure 3.32: Copy Value Check Code Command

13. Click the Validate Check Code button and, if needed, correct any issues.
14. Click Save.

3-20

Concatenate Fields

When writing check code for concatenating fields, syntax will be executed for new records
entered. The code will not go back and populate previously entered data. If previously
entered data need to be concatenated, use concatenation commands from the Classic
Analysis section of the manual.

Concatenate Fields with the Ampersand '&' Operator

This example illustrates how to join data from two fields and assign it into a third field
using the ‘&’ operator. In this example, Patient Full Name will be assigned to the
concatenation of First Name and Last Name.

In Form Designer, open your form.

Click Check Code. The Check Code Editor opens.

From the Choose Field Block for Action list box, select LastName.

Select after from the Before or After Section.

Click the Add Block button.

From the Add Command to Field Block list box, click Assign. The ASSIGN

dialog opens.

7. From the Assign Variable drop-down list, select the field to contain the
concatenated value.

8. Create the = Expression using the '&' operator. In this example, ASSIGN

PatientFullName = FirstName & LastName.

o Ot =

2 Add Command To Field Block

AtoSearch
. | G,
Define:

Assign Variable Dialog
PatiertFlNams R 72 O R B | (v

[ap][orR J[Yes][No][Mssng | S‘ECU‘E

eccode
e GoTo
~ FrstName & LastName i

V| Available Variables i
LastName - Unhighlight
¥

[ok [concel | [Functions | [Cear | [Hep | |f|ferfecord

Figure 3.33: Concatenate- Assign dialog box

9. Click OK. Check Code appears in the Check Code Editor.

Field LastMame
Lfter
//add code here
ASS5IGH PatientFullName = FirstName & LastMName

End-After
End-Field

Figure 3.34: Concatenate No Space Check Code Command

10. Click the Validate Check Code button and correct any issues.
11. Click Save.

If in the Enter tool, Carl was entered for FirstName and Gao was entered for LastName,
the result of PatientFullName would be CarlGao. There are no spaces between the names.
To add a space between the names, simply modify the ASSIGN statement by adding a
blank space in quotes between the first and last names as in the following statement:

Check Code Editor - [SinglePageForm

FEile Edit Fants
+ Validate Check Code ¥} Close [g] Save = Print

Field LastName
Lfter
//add code here
AS5IGH PatientFullName = FirstName & "™ " & LastName

End-ifter
End-Field

Figure 3.35: Concatenate Include Space Check Code Command

Concatenate Fields with the Substring Function

This example illustrates how to join parts of two variables to create a unique text ID. In
this example, you will create a Patient ID made up of parts of the patient's last and first
name. The ampersand (&) operator is used to join the two parts together.

Last Name First Name Patient ID

Figure 3.36: Enter Form - Name

1. From the Form Designer, click Check Code. The Check Code Editor opens.

3-22

From the Choose Field Block for Action list box, select FirstName.

Select after from the Before or After Section.

Click the Add Block button.

From the Add Command to Field Block list box click Assign. The ASSIGN

dialog box opens.

6. From the Assign Variable drop-down list, select the field to contain the
concatenated value. In this example, select PatientID.

7. Create the =Expression using the SUBSTRING syntax.

A

o SUBSTRING(<variable>, position #, #characters)

e <variable> is the field or variable

e position # is the position of the first character to be extracted from the variable
e #characters is the number of characters to extract

In this example, the PatientID variable contains a combination of the first position and

four characters of the last name plus the first position and three characters of the first
name.

- e |
= =)
— flcai
Assign Variable Elose el
FetentD A S 7 I [T W [
Disable
Lowo JLoon L v [b0 [themg | | ey
~SUBSTRNGLeshiame, 1.8 & SUBSTANG Freame, 1.3 e
Available Variables o
] = Unhide
Fighight
ok | [concel | [Fenctons | [Cear [Hem | |l
NewRecord

Quit

Figure 3.37: Concatenate with Substring Assign dialog box

8. Click OK. The code appears in the Check Code Editor window.

Check Code Editor - [SinglePageForm

File Edit Fonts
+ Validate Check Code ¥} Close [l save & Print

Field FirstName
Afrter
//add code here
L53IGHN PatientID = SUBSTRING(LastName, 1, 4) & SUBSTRING(FirstName, 1, 3)

End-After
End-Field

Figure 3.38: Concatenate with Substring Check Code Command

9. Click the Validate Check Code button and correct any issues.

3-23

10. Click the Save button.

The example functions as such:

Last Name: Smith

[]

¢ First Name: Megan

e Patient ID: SmitMeg

e The Patient ID field being calculated is Read Only.
Last Name First Name Patient ID
Smith Megan SmithMeg

Figure 3.39: Concatenate with Substring Enter Form

Create Check Code for Option Box Fields

Check Code can be added to option box variables. Code can be added to any line/choice
present in the option boxes. Use the Check Code Editor to create complex Check Code for

option box variables.

For this example, the check code created uses the GOTO command. Check Code was used
to create the following scenario. If the answer to TestOptions is Choice 1, the cursor will
jump to Question 2. If the answer to TestOptions is Choice 2 or Choice 3, the cursor will
jump to Question 1. Check the tab order before creating the Check Code to ensure that the

tab order is correct.

Test Optionz

[luestion 1 |
[luestion 2 |

(" Choize 3

Figure 3.40: Text Options box

1. Create an Option Box in a form. Note the name of the variable.

3-24

e The variable is named TestOptions.

e Each text line that represents a choice in the form represents a numeric position
in the Check Code Editor.

e For example, there are three lines/choices that can be made in the variable
TestOptions. In the Check Code Editor the choices are numeric, choice 1 =
position 0, choice 2 = position 1, and choice 3 = position 2.

Open the Check Code Editor.

From the Choose Field Block for Action list box, select TestOptions.

Select after from the Before or After Section.

Click the Add Block button.

From the Add Command to Field Block list box, click If. The IF dialog box opens.

From the If Condition field, type Test Options = 1.

Remember that the number 1 in this instance represents a text value called Choice

2.

9. Click the Code Snippet button in the Then section. A list of available commands
appears.

10. From the command list, select GoTo. The GOTO dialog box opens.

11. Select Question2.

® N ook W

12. Click OK.
K (=]
Available Variables:
TestOptons I V2 9 N S D R e
[a0 || orR | ves" [Mo]["Missing” |
If Condition:
TestOptions =1 S
Then:
GOTO Question2 - =
fix)
Else:
- &
fx)
OK |[cancd |[cClear][Hep

Figure 3.41: If dialog box

13. Click Validate Check Code and correct any issues.
14. Click Save.

3-25

Delete a Line of Code from the Check Code Editor

To delete a line(s) of check code from the Check Code Editor, you can complete the following
steps:

1. Highlight the line(s) of code/text that you desire to delete.
2. Press the Delete key on your keyboard.
3. Once done, from the Check Code Editor toolbar, click Save.

Note: Be sure of all deletions made. No confirmation prompt or undo button will
appear prior to deletion.

Disable

If there isn’t a need to capture information for a particular field, then it can be disabled.
Disable is usually used with the IF, THEN, ELSE conditions. In this example, the field
DoctorVisitDate will be disabled if the response to the DoctorVisit is No.

Open the FoodHistory_NoCheckCode form in the EColi.prj.

Click Check Code. The Check Code Editor opens.

Select the DoctorVisit from the Choose Field Block for Action list box.
Select after from the Before or After Section.

Click the Add Block button.

Ol W=

o [

1. Choose Field Block for Action
i Artibiotics : YesNo -
Asian - Checkbox
Black - Checkbox
BloodyDiarhea : Checkbox
CaselD : Number
Chills : Checldbox
DateCfDeath : Date
DateofInterview : Date 5
Died : YesMNo
DOB : Date
DoctorVisit : YesNo
before

m

DoctorVisitDate : Date
Email Address : Text
EthnicityGroup : LegalValues

| T iy N P S

Add Block: Doctor\isit after

Figure 3.42: Disable Block for Action

3-26

6. The code block appears in the Check Code Editor.

Check Codr Fitar - | FandHistery |
Bile pdd Fanis

o Validate Check Code) Clase bl Save o4 Print

Figure 3.43: Disable Block Command

7. Click IF from the Add Command to Field Block list box. The IF dialog box opens.

8. From the Available Variables drop-down list, select the field to contain the action.
For this example, select DoctorVisit. The selected variable appears in the If
Condition field.

9. From the Operators, click =.

10. From the Operators, click No. The If Condition field will read DoctorVisit=(-).

11. Click the Code Snippet button in the Then section. A list of available commands
appears.

12. From the command list, select DISABLE. The DISABLE dialog box opens.

13. Select the field to be disabled based on a No answer from the list of variables. For
this example, select DoctorVisitDate.

14. Click OK to return to the IF dialog box.

15. Click the Code Snippet button in the Else section. A list of available commands
appears.

16. From the command list, select Enable. The Enable dialog box opens.

17. Select the field to enable based on a Yes answer from the list of variables. For this
example, select DoctorVisitDate.

18. In the Enable dialog box, click OK to return to the If dialog box.

3-27

Available Varables:

Doctor\ist = - e = e e e L)i)]

Lm0 . on J e Lt][Woss]
If Condition:

DoctorVisit = -)
Then:

DISABLE DoctorVisit Date - 2
Else:

EMAELE DoctorVisit Date - =5

Figure 3.44: Disable- If dialog box

19. Click OK. The code appears in the Check Code Editor. The example code appears as:

Field DoctorVisit
Lfter
//fadd code here
IF DoctorVisit = (-) THEN
DISAELE DoctorVisitDate
ELSE
EMABLE DoctorVisitDate
END-IF
End-After
End-Field

Figure 3.45: Disable Check Code Command

20. Click Verify Check Code button.
21. Click Save.
22. Click Close to return to the form.

To test the Disable, open the form in the Enter Data tool. When No is entered for
DoctorVisit, DoctorVisitDate should become disabled.

3-28

Hide

A field may be hidden if there is not a need to capture information for a particular field or if
it does not apply based on previously answered questions. The field on the form would be
hidden from the form. In the following example, the Pregnant option box will be hidden
based on the users Sex; Female or Male.

Click Check Code. The Check Code Editor opens.

Select Sex from the Choose Field Block for Action list box.

Select after from the Before or After Section.

Click the Add Block button. This creates code to run after data is entered and
accepted.

The code appears in the Check Code Editor.

Click IF from the Add Command to Field Block list box. The IF dialog box
opens.

7. From the Available Variables drop-down list, select the field to contain the action.

= W=

o o

For this example, select Sex. The selected variable appears in the If Condition
field.

8. From the Operators, click =.

9. From the If Condition field, type Sex = “Male”. Remember that Sex is a text field
and the value must be enclosed in quotes.

10. Click the Code Snippet button in the Then section. A list of available commands
appears.

11. From the command list, select Hide. The Hide dialog box opens.

12. Select Pregnant.

13. Click OK.

3-29

¥ 53

Available Vanables:

s I) 0 (V9 [6 T 6 TR
Lm0 L or J_ e J[o'] Masng |

If Condition:

Sex = "Male"

Then:

HIDE Pregnant - =]

Elze

UNHIDE Pregnart - 1=

Figure 3.46: Hide- If dialog box

14. Click the Code Snippet button in the Else section. A list of available commands
appears.

15. From the command list, select UNHIDE. The Unhide dialog box opens.

16. Select the field to enable based on a Yes answer from the list of variables. For this
example, select Pregnant.

17. In the Unhide dialog box, click OK to return to the If dialog box.

18. Click OK.

19. Click OK. The code appears in the Check Code Editor.

Field Se=x
Lhfter
f/add code here
IF Sex = "Male"™ THEN
HIDE Pregnant
ELSE
UHNHIDE Pregnant
END-IF
End-After
End-Field

Figure 3.47: Hide Check Code Command

20. Click the Save button.

3-30

21. Click Close to return to the form.

Note: The Unhide command will display any hidden fields. You can select this
command in the Add Command to Field Block section of the Check Code Editor.
It is recommended to also incorporate a CLEAR command with the HIDE
command in order to set null any information previously entered into the
Pregnant field.

Geocode

The Geocode command uses the text entered into Address to retrieve and populate Latitude
and Longitude coordinates into your form.

1. From Form Designer, Open the FoodHistory_NoCheckCode form in the
EColi.prj.

Click Check Code. The Check Code Editor opens.

Select GetCoordinates from the Choose Field Block for Action list box.
Select Click.

Click the Add Block button. This creates code to run after the Get Coordinates
command button is clicked.

OUk WD

1. Choose Field Block for Action
i DefineVariables
+- Form : Geocode
+- Record
s

- Subroutine(s)
- [Page 1]: Page

: after

- Address : Text

— GetCoordinates : CommandButton
click

Latitude : Number

Longitude : Mumber

Add Block: GetCoordinates click

Figure 3.48: Geocode Block for Action

6. The code appears in the Check Code Editor.

7. Select Geocode from the Add Command to Field Block list box. The Geocode
dialog box opens.

8. From the Address drop-down list, select Address.

3-31

9. From the Latitude drop-down list, select Latitude.
10. From the Longitude drop-down list, select Longitude.

2. Add Command To Field Block

Assign
f Geocode u é;rltlogSearch
Clear
Address Figld: D_eﬁne
|Address - Destie
Latituds Field: Erable
[Latitude -]
Longitude Ficld: GoTo

Help

Hide
Unhide
Highlight
Unhighlight

[Longitude -]

i
NewRecord
Cuit

Figure 3.49: Geocode dialog box

11. Click OK.
12. Click OK. The code appears in the Check Code Editor.

Field GetCoordinates
Click
S fadd code here
GECCODE Address, Latitude, Longitude

End-Click
End-Field

Figure 3.50: Geocode Check Code Command

13. Click the Save button.
14. Click Close to return to the form.

When the Get Coordinates command button is clicked after an address is entered into
your form in the Enter Data tool, the Geocode Results dialog will appear.

3-32

Get Coordinates

Address Latitude Longitude

123 Main Street |

Figure 3.51: Geocode Enter Data Before

The Geocode Results dialog box contains, the Address entered into the form along with
the Latitude and Longitude coordinates of that address. The confidence and quality of the
geocoding service coordinates are also displayed.

[Geocode Results u

The geocoding service returned the following coordinates:

Address: 123 Main St.
Confidence: High

Quality: Good

Latitude: 42 1793468934141

Longitude: -77.1369705200135

Source: http:/fwww microsoft comimaps/

Figure 3.52: Geocode Results

After clicking Accept in the Geocode Results dialog box, the coordinates provided by the
geocoding service are copied into the Latitude and Longitude fields in your form.

Get Coordinates

Address Latitude Longitude

123 Main Street |42.1?99468994141 -77.1369705200195

Figure 3.53: Geocode Enter Data After

3-33

Additional Check Code Commands

Call

This command redirects to another command block in check code and returns after it has
been executed. This command is commonly used with subroutines. Subroutines act as a
unit of common check code, which is usually dependent on two variables. The benefit of
using subroutines is that it allows maintenance of check code in one common location. Here
is an example of a subroutine:

Sub CalculateDays=
LS55IGH DaysHosp = DAYS (AdmissionDate,DischargeDate)
End-Sub

Field AdmissionDate
Bfter
CALL CalculateDays
End-After
End-Field

Field DischargeDate
hfter
CALL CalculateDays
End-After
End-Field

Figure 3.54: Check code syntax for Subroutines

In the example above, the calculation of days hospitalized would have been required to be
placed in the AFTER event of the Admission Date and Discharge Date fields. However,
through the usage of subroutines, users can update and maintain check code only in one
location. By using the CALL command, the block of check code will execute when data are
entered or updated in either field.

Admission Date Discharge Date Days Hospitalized
6,/29,/2014 | |?f15f2014 | 16

3-34

To create a subroutine, complete the following steps:

1. From Form Designer, Open your form.
2. Click Check Code. The Check Code Editor opens.
3. From the Choose Field Block for Action list box, expand the Subroutine item.
4. Double click on the Add new item. The New Subroutine window opens.
5. Assign a name to your subroutine (i.e. MySubroutinel).
[Mew Subroutine @ﬁ
Enter subroutine name:
MySubrouting1|
| 0K || Cancel
1.

6. Click OK.

Sub MySubroutinel
f/fadd code here

End-5ub

A block of code for the subroutine called MySubroutinel is created and displayed in the
Check Code Editor. At this point, you can establish the check code commands to be
incorporated into the subroutine. Make sure to Verify your code and Save once done.

Clear

CLEAR sets a field to a missing value, as though the field had been left blank. For example,
it is useful to clear a previous entry in a field after an error has been detected. The CLEAR
command can be followed by a GOTO command in order to place the cursor back into the
field for further entry after an error. In the example below, the Date of Interview field is
cleared after the user is notified that the date value entered is greater than today’s date.

3-35

Eield DateofInterview
Lfter
//add code here
IF DateofInterview > SYSTEMDATE THEN
DIALCG "Date of Interview is greater than today's date. Please wverify."” TITLETEXT="Alexrt"
ELSE
CLERR DateofInterview
GOTC DateofInterview
END-IF

End-After
End-Field

Figure 3.55: Check code syntax for CLEAR command

Define

This command creates a new variable. In Check Code, all user-defined variables are saved
in the DEFINEVARIABLES section.

The proper syntax is:
DEFINE <variable name> {<scope>} {<field type indicator>}

e <variable name> represents the name of the variable to be created. <variable>
cannot be a reserved word. For a list of reserved words, see the List of Reserved
Words section of the User’s Manual.

e <scope>is optional and is the level of visibility and availability of the new
variable. This parameter must be one of the reserved words: STANDARD,
GLOBAL, or PERMANENT. If omitted, STANDARD is assumed and a type
indicator cannot be used.

e <field type indicator> is the data type of the new variable and must be one of
the following reserved words: NUMERIC, TEXTINPUT, YN, DATEFORMAT,
TIMEFORMAT and DLLOBJECT. If omitted, the variable type will be inferred
based on the data type of the first value assigned to the variable. Thereafter, the
variable type cannot be changed. An attempt to assign data of a different type to
the variable will result in an error.

3-36

mk:@MSITStore:C:%5CEPI_INFO%5CENGLISH%5CHELP%5CEIHELP.CHM::/Command_Reference/list_of_reserved_words.htm
mk:@MSITStore:C:%5CEPI_INFO%5CENGLISH%5CHELP%5CEIHELP.CHM::/Command_Reference/list_of_reserved_words.htm

DefineVariables
DEFINE MYVARTIABRLE1 TEXTINPUT
DEFINE MYVARIABLEZ GLCBAL NUMERIC
DEFINE MYVARTIARLEZ PERMANENT DATEFCRMAT
End-DefineVariables

Figure 3.56: Check code syntax for DEFINE command
Below is a description for the optional SCOPE parameter used with the DEFINE command.

e STANDARD variables retain their value only within the current record and are
reset when a new record is loaded. Standard variables are used as temporary
variables behaving like other fields in the database.

¢ GLOBAL variables retain values across related forms and when a new form is
opened by the program, but are removed when the Enter program is closed. Global
variables persist for the duration of program execution.

e PERMANENT variables are stored in the Epilnfo.Config.xml file and retain any
value assigned until the value is changed by another assignment or the variable is
undefined. Permanent variables are shared among Epi Info modules (Enter, Classic
Analysis, etc.) and persist even if the computer is shut down.

Enable/Disable These two commands usually work in conjunction. The DISABLE command
disallows data entry into a field while the ENABLE command allows data entry into a
previously disabled field.

Field ILL
After

//fadd code here

IF ILL = (-) THENW
DISABLE Symptoms

ELSE
EMABLE Symprtoms

END-IF

End-After
End-Field

Figure 3.57: Check code syntax for ENABLE/DISABLE command

3-37

Execute Use to execute a Windows program.

Executes a Windows program - either one explicitly named in the command or one
designated within the Windows registry as appropriate for a document with the file
extension that is named. This provides a mechanism for bringing up whatever program is
the default on a computer without first knowing its name. The EXECUTE command
accepts a series of paths, separated by semicolons, as in:

EXECUTE c:\Users\MyPC\myfile.xls;d:\myfile.xls

If the first is not found, the others are tried in succession. In Check Code, the EXECUTE
command can be placed in any command block, but is often used with a command button.
Check code syntax is executed when the user clicks on the command button.

1 ENOENY WAITFOREXIT "<filename>"|0@0@100ED NOWAITFOREXIT "<filename>"

e The <filename> represents the path and program name for .exe (filename for
registered Windows programs) and .com (filename -DOS binary executables) files.

e The <command-line parameters> represent any additional command-line arguments
that the program can accept.

e When Wait for Exit command is specified (modal), the command should run and
Enter should continue running. When No Wait for Exit command is specified (non-
modal), Enter should wait until the executed program closes before continuing.
When EXECUTE is run modally, permanent variables are written before the
command is executed and reloaded after the command is executed.

If the example below, the CDC website page is opened when the user clicks on a command
button called OpenCDCWebsite. A .pdf file is automatically opened when the user clicks on
a command button called OpenPDFdocument.

Field OpenCDCWebsite
Click
EXECUTE WAITFCREXIT "www.cdc.gov™
End-Click
End-Field

Field CpenPDFdocument
Click
EXECUTE WAITFCREXIT "C:\Users\MyPC\Deszktop\DownloadingEpiInfo7.pdf"
End-Click
End-Field

Figure 3.58: Check code syntax for EXECUTE command

3-38

Help

The Help command allows you to pop up a help window containing a message, or even a
window on a large file that allows the user to move from one block of text to another by
choosing highlighted portions of the text. This is a simple form of what is known as
“hypertext.”

Highlight/Unhighlight

This command emphasizes the location of a field by highlighting in bright yellow, for
example, if a data entry error was detected. It also unhighlights the field if needed. In the
example below, the field Emergency is highlighted if the response to the field Vaccinated =
“No”. All vaccinated questions are skipped and the field “Did you visit the emergency
room?” is highlighted.

Field Vaccinated
Lfter

IF Vaccinated = (-) THEN
GOTC emergency
HIGHLIGHT emergency

ELSE
UNHIGHLIGHT emergency

END-IF

End-After
End-Field

Figure 3.59: Check code syntax for HIGHLIGHT/UNHIGHLIGHT command

New Record

This command saves the current records data and opens a new record for data entry.

Field FinishInterview
After
//add code here
IF FinishInterview = (+) THEN
HNEWRECCORD
END-IF
End-After
End-Field

3-39

Figure 3.60: Check code syntax for NEWRECORD command

Quit This command allows the saving of the current record and closing of the Enter
application.

Field DoneWithEnteringData
hfter
//add code here
IF DoneWithEnteringData = (+) THEN
QUIT
END-IF
End-&fter
End-Field

Figure 3.61: Check code syntax for QUIT command

Set-Required and Set-Not-Required

Sometimes users might want to set up a field as required only if a specific criterion is met.
As with the REQUIRED property, if a field is set to required during data entry through
check code, the Enter module will not allow further page navigation until a value has been
entered into the field. In the example below, the field VaccinationDate is set as required if
the Vaccination question is answered as Yes using the Set-Required command. Notice
that the REQUIRE property has not been set during the creation of the field but it has been
set with the check code. Once the criterion is met, the field is set back to its original state
by using the Set-Not-Required command.

e =
Question or Prompt:
Date of Varcinatmn‘
Field Name:
VaccinationDate
Attributes
Field Vaccinated [CIRead Only [T Repeat Last Prompt Fort
Lfter [] Required Field Font
IF Vaccinated = (+) THEN
SET-REQUIRED VaccinationDate [[] Range
ELSE Lower Upper
SET-NCT-REQUIRED VaccinationDate Ty —
END-IF 7/29/2014 7/29/2014
End-After
End-Field

Figure 3.62: Check code syntax for SET-REQUIRED command

3-40

Check Features Covered Elsewhere - The Enter tool can be programmed to do many
interesting and complex operations not discussed in this chapter, including mathematical
and logical operations with more than one field, popping up help windows, and calling
programs in other languages that act on the contents of fields during data entry.

3-41

How to use EpiWeek Function

Epidemiological weeks are usually complete weeks. The ministries of health around the
world define the day of the week as the first epidemiologic day. As a result, some countries
may consider Sunday as the first day of the week while others may consider the first day of
the week to be either Saturday or Monday.

By default, Epi Info™ 7 marks Sunday as the beginning of the epidemiological week.
However, the parameter for the Epiweek function can be modified in order to change the
beginning of the epidemiological week as desired.

If the year of occurrence is not relevant, use the EpiWeek method instead. The advantage of
using EpiWeek is that the value is returned as a number and it can be stored in a numeric
field. EpiWeek takes one required parameter that must be a date. The week is calculated
relative to the year of the date provided. The Epidemiological week is calculated using the
following code:

ASSIGN MyEpiWeek = EPIWEEK(<start_date>, {<first_day_of week>})

The example below shows the check code needed for automatically calculating the
corresponding Epi Week into a field called SurveillanceWeek based on the value entered in
a date field called OnsetDate.

Field CnsecDate
Lfter
//add code here
ASSIGH SBurveillanceWeek = EPIWEEE|(CnsetDate)
End-after
End-Field

Figure 3.63: Check code syntax for EPIWEEK function

In the other hand, if you are required to modify the first day of the week parameter because
the week does not start on a Sunday, the check code syntax would need to be updated. In
the example below, the epidemiological week will be calculated based on a starting day of
Monday (i.e. Sunday will be 1, Monday will be 2, Tuesday will be 3, etc.)

3-42

Field CnsetDate
Lfter
//add code here
ALS5IGH SurveillanceWeek = EPIWEEE | CnsetDate,2)

End-Lfter
End-Field

Figure 3.63: Check code syntax for EPIWEEK function with beginning week parameter

3-43

Epi Info™ 7 User Guide — Chapter 3 — Check Code

Proper Check Code Syntax

Using the proper check code syntax is important based on the field type. Here are some
examples of the proper syntax to use based on the field type;

Assign the ‘Age’ field (numeric field type) the value 24
= ASSIGN Age =24

Assign the ‘TII’ field (Yes/No field type) the value No
= ASSIGNIIl = (-)

Assign the ‘AteChicken’ field (checkbox field type) the value Yes
= ASSIGN AteChicken = (+)

Assign the ‘DateOfInterview’ field (Date field type) the value 5/5/2012
= ASSIGN DateOfInterview = 5/5/2012

Assign the ‘CaseStatus’ field (legal values field type) the value “Confirmed”
= ASSIGN CaseStatus ="Confirmed"

Assign the ‘Gender’ field (Comment Legal field) the value “F”. The field is coded

as M-Male, F-Female.
= ASSIGN Gender ="F"

3-44

	3. Check Code: Customizing the Data Entry Process
	Introduction
	Accessing Check Code Program Editor
	Navigate the Check Code Program Editor
	Check Code Commands
	Basic Check Code Command Rules
	Creating a Check Code Block
	Create a Skip Pattern with GOTO
	Create a Skip Pattern Using IF/THEN and GOTO
	Using Functions with a Date field
	Interact with Users with the DIALOG command
	Searching for Records – Using the AUTOSEARCH command
	Copy the Value of a Field from a Main Form to a Related Form
	Concatenate Fields
	Concatenate Fields with the Ampersand '&' Operator
	Concatenate Fields with the Substring Function

	Create Check Code for Option Box Fields
	Delete a Line of Code from the Check Code Editor
	Disable
	Hide
	Geocode

	Additional Check Code Commands
	Call
	Clear
	Define
	Execute Use to execute a Windows program.
	Help
	Highlight/Unhighlight
	New Record
	Quit This command allows the saving of the current record and closing of the Enter application.
	Set-Required and Set-Not-Required

	How to use EpiWeek Function
	Proper Check Code Syntax

