
Sequencing strategies for SARS-CoV-2

COVID-19 Genomic Epidemiology Toolkit: Module 3.6

Shatavia S. Morrison, PhD Bioinformatics Unit Lead Centers for Disease Control and Prevention

cdc.gov/coronavirus

Toolkit map

Part 1: Introduction

- 1.1 What is genomic epidemiology?
- 1.2 The SARS-CoV-2 genome
- 1.3 How to read phylogenetic trees
- 1.4 Emerging variants of SARS-CoV-2

Part 2: Case Studies

- 2.1 SARS-CoV-2 sequencing in Arizona
- 2.2 Healthcare cluster transmission
- 2.3 Community transmission
- 2.4 Superspreading event

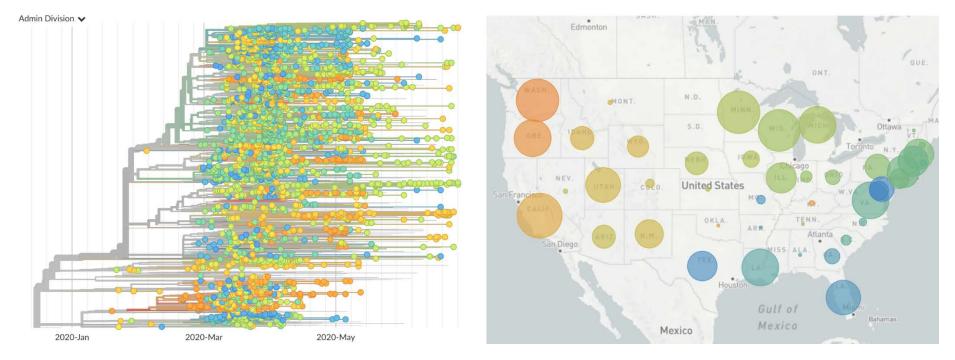
Part 3: Implementation

3.1 Getting started with Nextstrain

3.2 Getting started with MicrobeTrace

3.3 Phylogenetics with UShER

3.4 Walking through Nextstrain trees


3.5 Public genome repositories

3.6 Sequencing strategies for SARS-CoV-2

National level:

- Monitor emergence of important new strains
- Monitor trends after interventions such as vaccination

COVID-19 EPI Toolkit Module 0. Nextstrain.org

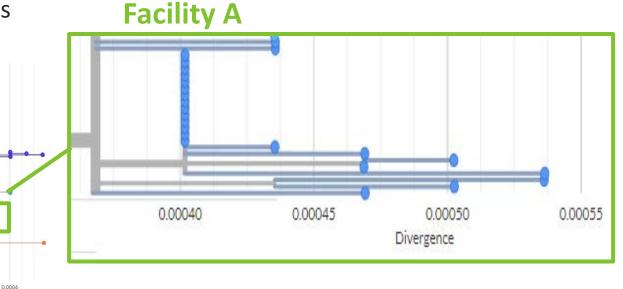
State and local levels:

Identify clusters

0.0000

0.0001

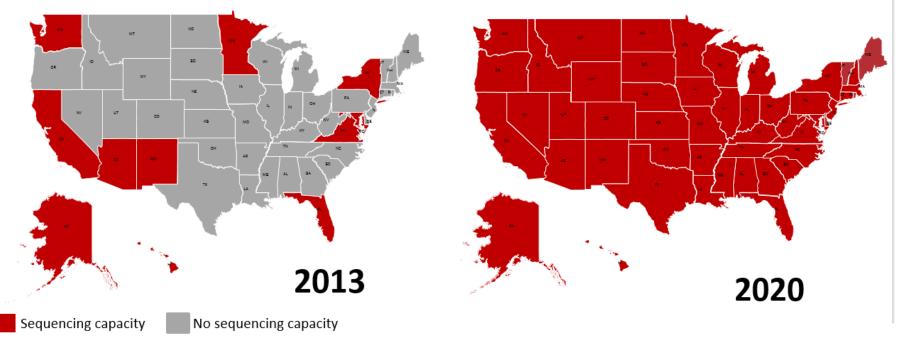
0.0002


0.0003

Divergence

0.0004

0.0005


- Investigate outbreaks
- Identify Superspreading events
- Support control efforts

COVID-19 Genomic Epidemiology Toolkit - Module 2.2. Trees drawn with Nextstrain.org

Sequencing capacity in the United Sates

Seven years of building NGS capacity in state public health laboratories

www.aphl.org/aboutAPHL/publications/Documents/ID_NGSSurveyReport_52015.pdf

Which specimens to sequence?

- Outbreak Investigations
 - High-risk groups, such as congregate living settings
 - eg, skilled nursing facilities, homeless shelters, correctional facilities
 - Super-spreader events
- Surveillance
 - Laboratory-based, for emerging strains and trends
 - eg, S-gene target failure, VOIs or VOCs
 - Epidemiologically defined, for cases of particular interest
 - eg, reinfection, vaccine breakthrough, travel exposure, severe COVID-19 in children

VOI – Variants of Interest, VOC – Variants of Concern : https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html

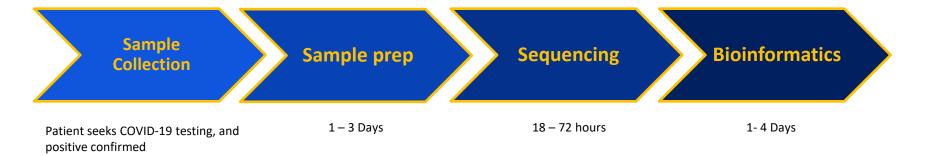
Toolkit case study examples

- Surveillance
 - Laboratory-based

Module 2.1: SARS-CoV-2 trends in Arizona

- Outbreak Investigations
 - High-risk groups

Module 2.2: outbreaks in two skilled nursing facilities


Module 2.3: workplace and community transmission

- Super-spreader events

Module 2.4: super-spreading in a pre-symptomatic population

Technical considerations

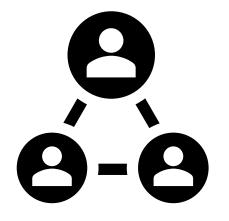
- Genome Completeness
 - Is sequencing only the S-gene (spike protein) sufficient?
- Ct (cycle threshold) value
 - Ct value
 genome sequence recovery
- Laboratory's sequencing capacity

https://www.aphl.org/programs/preparedness/Crisis-Management/Documents/APHL-COVID19-Ct-Values.pdf

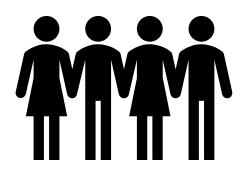
Other factors to consider for sequencing capacity

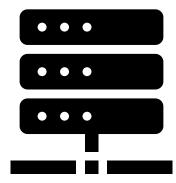
One size does NOT fit all

One size doesn't fit all – Beginner


- No or minimal in-house wet-lab or dry-lab capacity
 - Send samples to labs who have experience with wet-lab and dry-lab sequencing processes

One size doesn't fit all - Intermediate


Has some wet-lab and dry-lab capacity


- Has sequencing capacity, *however* lacks high throughput
- Maybe focus on forming partnerships with labs that have high throughput capacity, such as academic institutions or 3rd party vendors or fellow public health laboratories

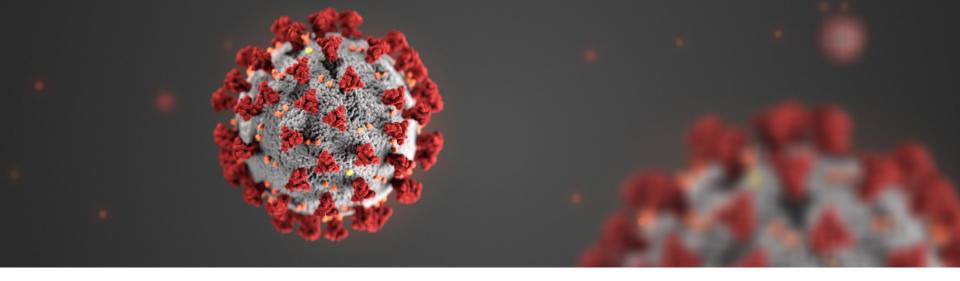
One size doesn't fit all - Advanced

- Has high throughput wet-lab and dry-lab capacity
 - Most likely has multiple sequencing instruments
 - Access to scientific computing environments
 - Experience with genomic epidemiological based investigations

Food for thought once sequencing data are available

- Submit your data to a public sequence repository
 - May supplement your local investigation and surveillance with background context from public repository
 Module 3.5: Public genome repositories for SARS-CoV-2
- Perform and apply genomic epidemiology with generated sequence data
 - May provide additional discriminatory power on introduction event of SARS-CoV-2 in outbreak or identify the most prevalent strain circulating within your population
 Module 1.3: How to read a phylogenetic tree
 Module 1.4: Emerging variants of SARS-CoV-2

Module 2.3: Investigating workplace-community transmission


Summary

- Know your motivation for sequencing
 - Are we sequencing outbreaks and/or for surveillance activities?
- Technical considerations
 - What is our sequencing capacity and how it will impact the tasks we need to complete?
- Understanding your capacity
 - How can we get the maximum return for our effort?

Learn more

- Other modules
 - Getting started with MicrobeTrace Module 3.2
 - Phylogenetics with UShER Module 3.3
 - Walking through Nextstrain trees Module 3.4
 - Public genome repositories for SARS-CoV-2 Module 3.5
- COVID-19 Genomic Epidemiology Toolkit
 - Find further reading
 - Complete a feedback survey
 - Subscribe to receive updates on new modules as they are released
 - go.usa.gov/xAbMw

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

