
Real-time phylogenetics with UShER

COVID-19 Genomic Epidemiology Toolkit: Module 3.3

Russ Corbett-Detig, PhD Assistant Professor Department of Biomolecular Engineering University of California, Santa Cruz

cdc.gov/coronavirus

Toolkit map

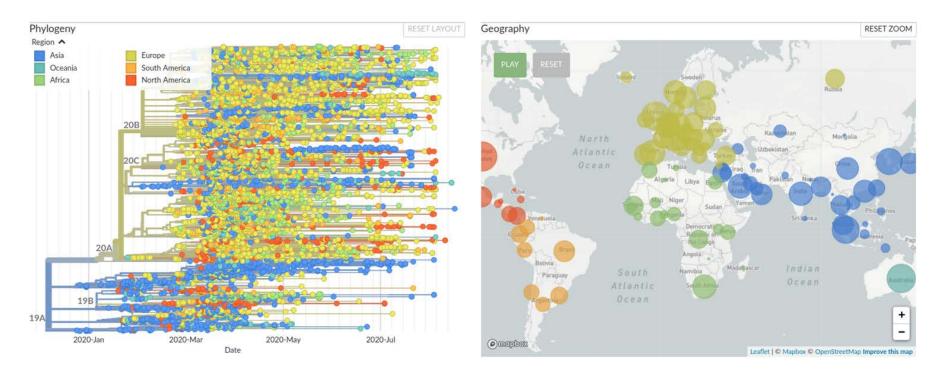
Part 1: Introduction

- 1.1 What is genomic epidemiology?
- 1.2 The SARS-CoV-2 genome
- 1.3 How to read phylogenetic trees
- 1.4 Emerging variants of SARS-CoV-2

Part 2: Case Studies

- 2.1 SARS-CoV-2 sequencing in Arizona
- 2.2 Healthcare cluster transmission
- 2.3 Community transmission

Part 3: Implementation

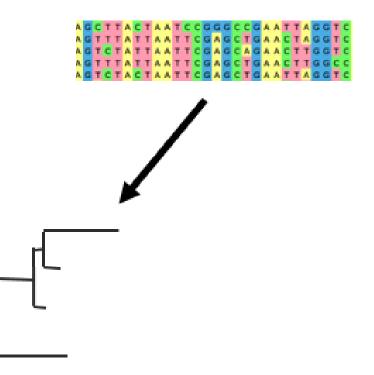

3.1 Getting started with Nextstrain

3.2 Getting started with MicrobeTrace

3.3 Linking epidemiologic data

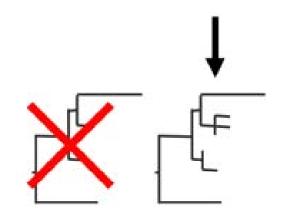
Tracking viral evolution

Images from nextstrain.org

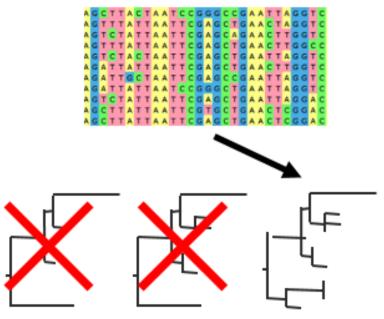

UShER: Real-time phylogenetic placement

- <u>U</u>ltrafast <u>Sample placement on Existing tRees</u>
- Designed to take user sequences and
 - 1. Accurately place them onto global phylogeny
 - 2. Construct new subtrees
 - 3. Enable easy visualization
- Runs quickly (<1 second) to facilitate genomic epidemiology

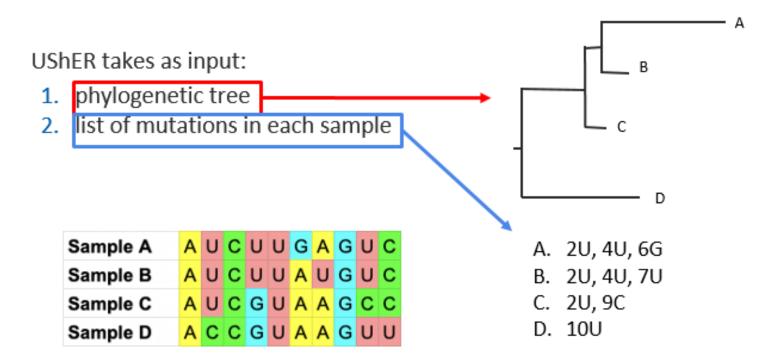
Constant flow and huge datasets overwhelm typical phylogenetics approaches


- Typical phylogenetic workflow:
 - 1. Gather data
 - 2. Calculate tree

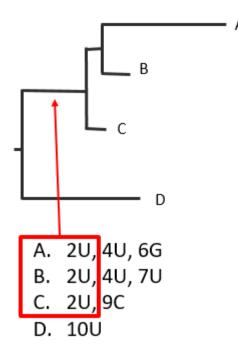
Constant flow and huge datasets overwhelm typical phylogenetics approaches

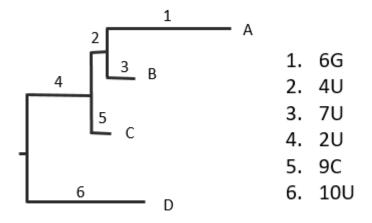

- Typical phylogenetic workflow:
 - 1. Gather data
 - 2. Calculate tree
 - 3. More data!
 - 4. Recalculate tree?

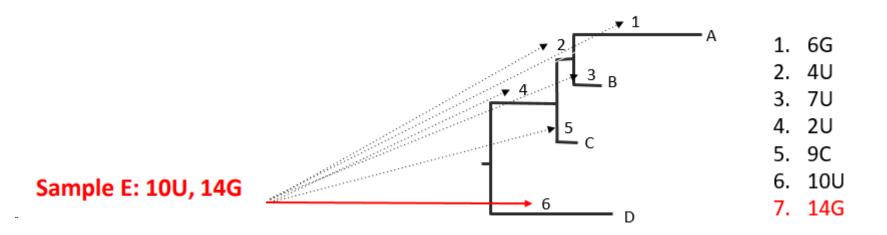
			T																								
A		T	Τ	T	A	Τ	T	A	A	Ŧ.	T	C	G	A	G	C	T	G,	A	A	¢	T	A	G	G	t	C.
Å		T	¢	Ŧ	A	π	Ŧ	A,	٨	T	T	E	a	A	0	Ċ,	A	a	A	A	C,	T	1	a	G,	τ	e.
Å		Ŧ	T	Ŧ	A	Ŧ	Ŧ	A	A	Ŧ	1	c	8	A	0	С	Ŧ	đ	A	A	e	T	Ŧ	G	a,	c	C)
4		T	Ċ	Ŧ	A.	e	Ť	A	A	۴	T	E	a	A.		e	Ŧ.	đ	A	A	Ŧ.	T	A	6	a	Ŧ	e.
A	i.	A	T	-	٨	T	T	A	٨	T	T	c	a	Å	đ	c	ł.	a	A	A	c	T	T	G.	6	τ	e.
	P	A	Ť	T	Ċ.	c	T	A.	A	-	T	c	a	4	a	c	e	đ	A	A	Ŧ	T	A	6	đ	Ŧ	c
		A	T	T	A	T	T	A	Å.	T	c	C	a	6	-	C	T	0		A	Ŧ	T	4	a	6		e.
			-			-												-						-			



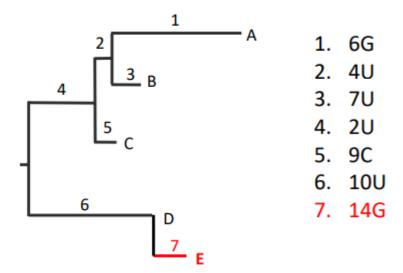
Constant flow and huge datasets overwhelm typical phylogenetics approaches


- Typical phylogenetic workflow:
 - 1. Gather data
 - 2. Calculate tree
 - 3. More data
 - 4. Recalculate tree
 - 5. More data!
 - 6. Recalculate tree?


Repeat... forever


Using parsimony, UShER maps mutations onto the existing tree.

UShER stores this **mutation annotated tree**.


New samples are added using maximum parsimony by checking every possible placement.

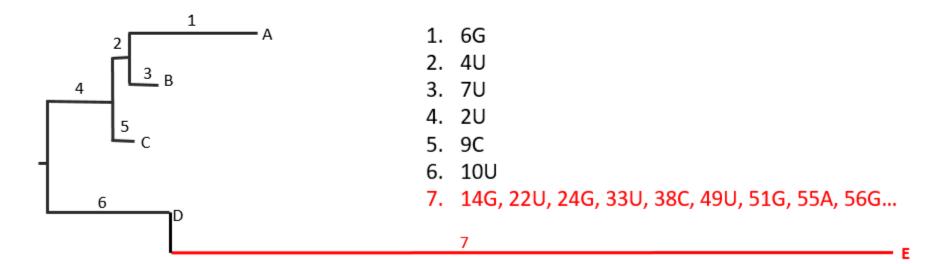
UShER placements are highly accurate

UShER finds the correct placement in 97% of the cases.

When incorrect, placements are still usually very close to the true site.

UShER output

UShER outputs a subtree of 50 most closely related samples to a user's sample.

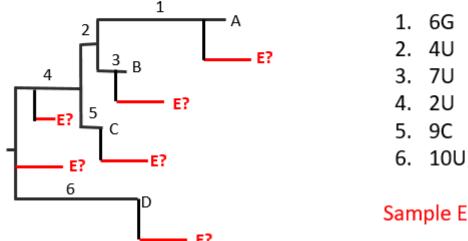

User's sample in red

This subtree can be visualized and explored using the Nextstrain platform.

UShER's quality control metrics

Fasta Sequence	Size (?)	#Ns (?)	#Mixed	Bases aligned (?)	Insertions (?)	for placement		#Masked SNVs (?)	Neighboring sample in tree (?)	Lineage of neighbor (?)	#Imputed values for mixed bases (?)	#Maximally parsimonious placements (?)	Parsimony score (?)	Subtree number (?)
hypothetical_uploaded_sequence_1	29903	0	0	29903 (?)	0	0	37 <u>(?)</u>	2 <u>(?)</u>	England/CAMC- AEAAD7/2020 20-10-26	B.1.5	0	2	32	1 (view in Nextstrain)

The parsimony score - Number of mutations unique to a user's sample branch.



UShER's quality control metrics

Fasta Sequence	Size (?)	#Ns (?)	#Mixed (?)	Bases aligned (?)	Insertions (?)	Deletions (?)	#SNVs used for placement (?)	#Masked SNVs (?)	Neighboring sample in tree	Lineage of neighbor (?)	#Imputed values for mixed bases (?)	#Maximally parsimonious placements (?)	Parsimony score (?)	Subtree number (?)
hypothetical_uploaded_sequence_1	29903	0	0	29903 (?)	0	0	37 <u>(?)</u>	2 <u>(?)</u>	England/CAMC- AEAAD7/2020 20-10-26	B.1.5	0	2	32	1 (view in Nextstrain)

2U

The number of equally parsimonious placements for an added sample.

Sample E: 2N, 4N, 6N, 7N, 9N, 10N...

Uploading data

>genome_01 AUGAUGCAUGCUGCAUGAUG CGUCAUGACACUGAUCG >genome_02 AUGAUGCAUGCUGCAUGAUG CGUCAUGACACUGAUCG

...

https://genome.ucsc.edu/cgi-bin/hgPhyloPlace

Summary

- UShER places samples onto a global phylogeny of SARS-CoV-2 genomes.
 - Learning about relationships among user samples, e.g., the number of unique introductions in an area.
 - Rapid sequence quality control.
- UShER resources:
 - Hands-on example data: https://github.com/russcd/USHER_DEMO
 - The UShER source code: https://github.com/yatisht/usher
 - Manuscript: https://www.biorxiv.org/content/10.1101/2020.09.26.314971v1
 - UShER's web resource: https://genome.ucsc.edu/cgi-bin/hgPhyloPlace

Acknowledgements - The UShER Team and Funding

Yatish Turakhia, UCSC

Nicola DeMaio, EBI

UNIVERSITY OF CALIFORNIA Genomics Institute

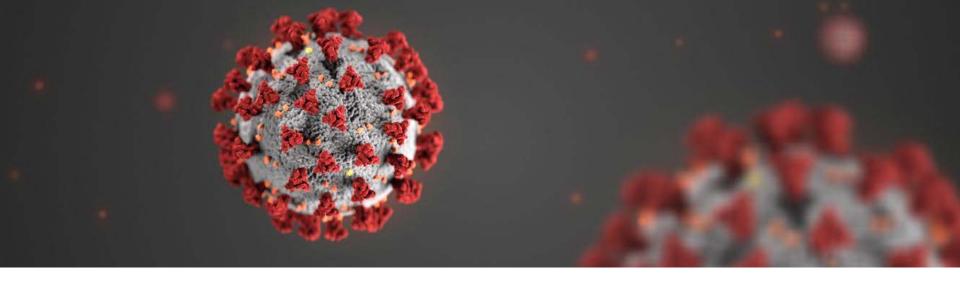
Pat & Rowland Rebele

Angie Hinrichs, UCSC

Landen Gozashti, UCSC

Bryan Thornlow, UCSC

Ron Lanfear, ANU


David Haussler, UCSC

Learn More

- Other modules
 - Getting started with Nextstrain Module 3.1
 - Getting started with MicrobeTrace Module 3.2
- COVID-19 Genomic Epidemiology Toolkit
 - Find further reading
 - Subscribe to receive updates on new modules as they are released
 - go.usa.gov/xAbMw

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

